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Atrazine is the most commonly used herbicide in the U.S. and ht 
probably the world. It can be present at several parts per million in h< 
agricultural runoff and can reach 40 parts per billion (ppb) in fe 
precipitation. We examined the effects of atrazine on sexual R 
development in African clawed frogs (Xenopus laevis). Larvae were te 
exposed to atrazine (0.01-200 ppb) by immersion throughout A 
larval development, and we examined gonadal histology and at 
laryngeal size at metamorphosis. Atrazine (>0.1 ppb) induced wi 
hermaphroditism and demasculinized the larynges of exposed ar 
males (>1.0 ppb). In addition, we examined plasma testosterone le 
levels in sexually mature males. Male X. laevis suffered a 10-fold 
decrease in testosterone levels when exposed to 25 ppb atrazine. Dc 
We hypothesize that atrazine induces aromatase and promotes the cc 
conversion of testosterone to estrogen. This disruption in steroi- (p 
dogenesis likely explains the demasculinization of the male larynx ar 
and the production of hermaphrodites. The effective levels re- in 
ported in the current study are realistic exposures that suggest that Ic 
other amphibian species exposed to atrazine in the wild could be St 
at risk of impaired sexual development. This widespread com- cc 
pound and other environmental endocrine disruptors may be a tr 
factor in global amphibian declines. et 

et 
n the last 10 years, a great deal of attention has focused on the ar 
global presence of endocrine-disrupting contaminants in the ex 

environment (1, 2). Similarly, a great deal of attention has th 
focused on global amphibian declines (3, 4). In the case of ta 
amphibian declines, efforts focus on identifying causes (5), at 
whereas for endocrine disruptors, the "causes" have been iden- or 
tified and studies focus on identifying effects of endocrine pC 
disruptors in the environment (6-11). ur 

Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5- m 
triazine) is the most commonly used herbicide in the U.S. and cc 
probably the world. The U.S. Department of Agriculture reports 
that more than 30,000 tons (60 million pounds) are used annually Gi 
in the U.S. alone (12). Atrazine has been used for over 40 years ti( 
and currently it is used in more than 80 countries. Despite its e 
widespread intensive use, atrazine is considered safe because of a 
its short half-life and negligible bioaccumulation and biomagni- m 
fication (13). Also, atrazine seems to have very few effects on O 
adults and reportedly induces abnormalities and deformities only b( 
at very high doses. As a result of the high doses required to fu 
produce deformities, it has been suggested that "direct toxicity 
of atrazine is probably not a significant factor in recent amphib- G 
ian declines" (14). Here, we test the hypothesis that atrazine may m 
interfere with metamorphosis and sex differentiation at ecolog- fi 
ically relevant low doses via endocrine-disrupting mechanisms. F 

Materials and Methods w 
Animal Breeding and Larval Care. We report results from two 
experiments that used frogs from two separate sources. Adults At 
from Exp. 1 were from a long-term captive colony maintained at 
the University of California, Berkeley, whereas adults from Exp. Th 
2 were obtained from Nasco (Fort Atkinson, WI). In both ar 
experiments, three females and three males were injected with ?1 
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iman choriogonadotropin (1,000 international units) 6 h before 
rvesting gametes. Eggs were manually stripped from the 
male and fertilized in vitro in 0.3 X modified mammalian 

nger's solution by using the sperm obtained from the dissected 
stes of the three males. The embryos were allowed to hatch. 
fter 4 days, the larvae were all mixed and netted into tanks 5 
a time repeatedly, until all tanks contained 30 larvae. Larvae 
-re reared in 4 liters of aerated 10% Holtfreter's solution (15) 
d fed a solution of ground Purina rabbit chow daily. Food 
vels were adjusted as the animals grew to maximize growth. 

,sing. In Exp. 1, we exposed larvae to atrazine at nominal 
ncentrations of 0.01, 0.1, 1.0, 10.0, and 25 parts per billion 
pb), whereas the second experiment used 0.1, 0.4, 0.8, 1.0, 25, 
d 200 ppb atrazine. Concentrations were confirmed by two 
dependent laboratories (PTRL West, Richmond, CA, and the 
wa Hygienic Laboratory, Univ. of Iowa, Iowa City, IO). All 
)ck solutions were made in ethanol (10 ml), mixed in 15-gallon 
ntainers, and dispensed into treatment tanks. Controls were 
,ated with ethanol such that all tanks contained 0.004% 

hanol. Water was changed and treatments were renewed once 

ery 72 h. Each treatment was replicated 3 times with 30 
imals per replicate (total of 90 animals per treatment) in both 

periments. All treatments were systematically rotated around 

e shelf every 3 days to ensure that no one treatment or no one 
nk experienced position effects. Experiments were carried out 
22?C with animals under a 12-h/12-h light/dark cycle (lights 
i at 6 a.m.). Animals were exposed throughout the entire larval 

riod, from hatching [Niewkwoop-Faber (NF) Stage 48 (16)] 
ltil complete tail reabsorption (NF Stage 66). In all experi- 
ents, all treatments and analyses were conducted blindly with 
lor-coded tanks and treatments and number-coded specimens. 

oss Measurements. At metamorphosis (complete tail reabsorp- 
)n-Niewkwoop-Faber Stage 66), the date was recorded for 
ch animal. Each animal was weighed to the nearest 0.002 g on 
Mettler AT 261 Delta Range balance and its total length was 
easured to the nearest 0.5 mm. Animals were anesthetized in 

2% benzocaine (Sigma), assigned a unique identification num- 
r, fixed in Bouins' fixative, and preserved in 70% ethanol until 
rther analysis. 

madal Analysis. Initially, the sex of all individuals was deter- 
ined based on gross gonadal morphology (Fig. 1). Sex identi- 
:ation was confirmed by histology for 10 animals per tank. 
irther, histological analysis was conducted on all animals for 

hich the sex was ambiguous when determined by gross mor- 

breviation: ppb, parts per billion. 
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Fig. 1. Gonads of a control postmetamorphic male (A and C) and female (B CO 
and D) X. laevis. A and B show the entire dissected kidney-adrenal-gonadal ge 

complex preserved in Bouins' fixative. C and D show 8 jm of transverse dc 
cross-sections through the animals' right gonad stained with Mallory's or 
trichrome stain. [Bar = 0.1 mm (A and B) and 10 um (Cand D)]. FB, fatbody; K, cc 
kidney. Arrows (in A and B) show the anterior and posterior ends of the an 
animals' right gonads. The yellow color in A and B is a result of fixation in Fi 
Bouins' fixative. Without fixation, the gonad is transparent. The ovary is 

distinguished by its greater length, lobed structure, and melanin granules. 
Although some specimens' ovaries lack pigment (especially atrazine-treated 

animals), testes never have melanin in this species. Histologically, the ovary is 
distinguished by the ovarian vesicle (hole in the center) along its entire length R 
and the internal ring of connective tissue (in blue). Note the melanin granules Ml 
(black) in the connective tissue in D. ex 

m 
sh 

phology. All histology was conducted according to Hayes (17). 
In brief, tissues of interest were dissected and dehydrated in Et 
graded alcohols, followed by infiltration with histoclear and fe 
paraffin. Sections were cut at 8 /xm and stained in Mallory's gc 
trichrome stain. (e 

to 
Laryngeal Size. Serial transverse histological sectioning was con- in 
ducted on the larynges of 10 males and 10 females from each ar 

replicate from all treatments in both experiments. Histology was cc 
conducted as described above. To estimate the size of the larynx, ot 
the M. dilator laryngis was measured. We used the largest ye 
cross-sectional area (transverse section) as a measure of muscle 
size. Initially, 10 sections were taken from 100 animals (distrib- Pt 
uted over all treatments from Exp. 1) until a region approxi- la 
mately one-third through the larynx was repeatedly determined Pr 
to be the largest section. For the final analysis this region was a 
identified by shape. Thus, similar sections were measured for ra 

each individual. Images of this section from each animal were ti( 

recorded with a Sony DKC-5000 and analyzed with METAMORPH (P 
software (version 2.75, Universal Imaging, Media, PA). 

se 

Adult Treatments. Newly metamorphosed animals were too small 
to obtain enough plasma to measure hormone levels. Thus, 
studies of effects of atrazine on hormone levels focused on Di 
adults. For adult studies, males and females were obtained from A 
a long-term captive colony at University of California, Berkeley. St 
Adults were maintained under the same light and temperature re 
cycles as described for larvae. Animals were acclimated in 10% te 
Holtfretter's solution for 5 days and then exposed to 25 ppb hz 
atrazine. Water was not aerated, animals were fed Purina trout re 
chow daily, and water was changed and treatment renewed every st 
72 h. Animals were treated for 46 days. At the end of the wi 

exposure, animals were killed by decapitation, and the blood was re 
collected. Plasma was collected and stored frozen until analysis. la 
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. For testosterone analysis, plasma was extracted with diethyl 
ler and dried under nitrogen. All samples were reconstituted 
PBS with gelatin (PBS-g). Hormone assays were conducted as 
scribed in Hayes and Licht (18). Testosterone antisera were 
tained from Endocrine Sciences (Calabasas, CA) and were 
lidated for several species including Xenopus laevis. Plasma 
)m controls and treated animals was assayed in the same assay 
3 doses and the assay was repeated 3 times. Intraassay 

riation was 1.0%, and interassay variation was 1.3%. 

itistical Analysis. Statistical analysis was conducted with the aid 
SYSTAT software (SPSS, Chicago). Sex ratios were analyzed by 
ing the G test with Wilkin's g- adjustment as described in 

iyes and Menendez (19). Similarly, mortality was analyzed by 
ing the G test. Time to metamorphosis and size (length and 

ight) at metamorphosis were analyzed by using ANOVA with 
,atment, tank, and sex (sex nested within tank and tank nested 
thin treatment) as independent variables. In addition, we 
nducted correlational analyses to determine whether laryn- 
al size correlated with time to metamorphosis, size, or atrazine 
se. Also, we scored all animals as to whether they were greater 
less than the mean laryngeal size for controls and then 

nducted a G test to determine whether the number of affected 
imals in the treatment group changed with atrazine treatment. 

nally, we used Kendall's ranked coefficient to determine 
lether the percentage of below-average animals varied with the 
se of atrazine. 

suits 

)rtality, Development, and Growth. At the doses tested, atrazine 
posure had no effects (P > 0.05) on mortality, time to 
etamorphosis, length, or weight at metamorphosis (not 
own). 

:ects on Primary and Secondary Sex Differentiation. Males and 
males were sexually differentiated at metamorphosis based on 
nadal morphology and histology (Fig. 1). At all doses tested 

xcept 0.01 ppb), atrazine produced gonadal abnormalities. Up 
20% of the animals (16-20%) had multiple gonads (up to 6 
a single animal) or were hermaphrodites (with multiple testes 
d ovaries; Fig. 2). These abnormalities were never observed in 
ntrol animals in the current experiments or in over 10,000 
servations of control animals in our laboratory over the last 6 W 

ars. 
Control males had larger larynges than females at metamor- 
osis, but males exposed to atrazine (-1 ppb) had reduced 
rynges (both studies; Fig. 3 A and B). When we examined the 

oportion of "below-average" animals against dose, we found 

:hreshold effect at 1 ppb (both studies; Fig. 3C), but Kendall's 
nk coefficient suggested a dose effect with increasing propor- 
,ns of affected males associated with increasing atrazine doses 
< 0.01; Fig. 3D). 

We hypothesized that the effects of atrazine were caused by a 

sruption of steroidogenesis (20-27). Further, we showed that 

xually mature males suffered a 10-fold decrease in plasma 
;tosterone (Fig. 4). 

scussion 

though data from two experiments are reported here, these 
idies have been repeated four times, including an unpublished 
port and a study submitted to the U.S. Environmental Pro- 
ction Agency (28). In total, atrazine exposure at these levels 
s been replicated 51 times by our laboratory with similar 
sults. We chose X. laevis for these studies, because it is a well 
idied laboratory model for which the effects of sex steroids are 
d11 known. Exposure to exogenous estrogen in this species 
sults in 100% females (29, 30), whereas androgens increase 
ryngeal growth but do not affect gonadal differentiation (30, 

PNAS | April 16, 2002 | vol. 99 I no. 8 | 5477 



0 

eS l ~mJ 

Fig 
_EC Ovaisaries 

[Bar = 0.1 mm (A) and 25 cm (B-E)]. FB, fatbody; K, kidney; 0, ovary(ies); T, ExI 
testis(es). Note the absence of pigment in the ovaries, which was typical of ab; 
hermaphrodites. atr 

me 

pr< 
31). Thus, endpoints for detecting sex steroid-like or antagonistic (_ 
effects are well defined for this species. The current findings thE 

suggest that atrazine inhibits testosterone and induces estrogen at 

secretion. Ke 

Previous studies have suggested that atrazine is an endocrine shi 

disruptor, but these effects have been observed in a single strain pr( 

of rat or were produced only at high doses (32-38). In fact, no i, 

published studies have addressed effects of atrazine at concen- 

trations considered safe in drinking water or safe for limited 

human exposure-3 and 200 parts ppb, respectively (39). Also, stt 
until now, the potential endocrine-disrupting effects of atrazine d lo 
have not been examined in amphibians, although teratogenesis, ad 

mortality, and growth effects have been examined at high doses stt 

(14, 40-45). In the cited amphibian studies, deformities, acute qu 
toxicity, or physiological impairments were not detected below 

atrazine doses of 47.6 ppm. c 
Disruption of steroidogenesis by atrazine has been reported in te 

mammals (20-26) and reptiles (27), however. Several of these es 
studies reported the induction of aromatase and an increase in to 
estrogen. Here, we suggest that the same mechanism may explain of 
the effects observed in X. laevis. An induction of aromatase may 
result in the decrease in androgens (as androgens are the lo 
substrate for aromatase). The loss of masculine features, such as 

the decreased laryngeal size, may be a result of the decreased 

androgens, whereas the induction of ovaries may be a result of re 

increased estrogen synthesis and secretion. The possible com- 

mon mechanism underlying the abnormal sexual development in to 

the current study and reproductive abnormalities in reptiles and le 

mammals has significant implications for environmental and PT 

public health. The effects observed in mammals were dismissed en 

as a concern for public health because the exposure levels were re 

very high (20-26, 32-38). The effective doses in the current he 

study, however, demonstrate the sensitivity of amphibians rela- 
tive to other taxa, validate the use of amphibians as sensitive re 
environmental monitors/sentinels, and raise real concern for of 
amphibians in the wild. The effects on the gonads in the current ec 
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3. Results of measurements of the left laryngeal muscle (M. dilator 

fngis) in control males and females compared with atrazine-treated ani- 
Is. In Exp. 1 (A), atrazine (-1 ppb) reduced laryngeal size in males but did 

:affect females. Doses of 0.01 and 0.1 ppb did not have a significant effect. 

;xp. 2 (B), 0.1-0.8 ppb atrazine did not have a statistically significant effect 

laryngeal size but again, exposure to 1 ppb atrazine significantly reduced 

ngeal size in males (P < 0.05). Laryngeal size was greater in animals from 
). 2 compared with Exp. 1, suggesting a population difference in the 
olute size of the larynges, but the relative sizes (male to female and 
azine-treated compared with controls) were similar within each experi- 
nt. C and D show two interpretations of the data by using analysis of the 

)portion of above-average males for both experiments. Atrazine exposure 
I ppb) significantly decreased the proportion of males that were at or above 
mean for control males (G test; P < 0.05) and suggested a threshold effect 

1.0 ppb in which 80% of the exposed males were below average (C). 
ndall's rank coefficient analysis (P < 0.01), however, suggested a relation- 
p between dose and the proportion of affected males with a decrease in the 

)portion of normal males with increased dose (D). Note that control males 
re normally distributed with exactly 50% of the individuals above the mean 
)oth experiments. 

idy were produced at 0.1 ppb, which was more than 600 times 
ver than the dose required to induce aromatase in human 
renocortical carcinoma (25) and placental choriocarcinoma 
ldies (25-26) and 30,000,000 times lower than the dose re- 
ired to produce reproductive effects in rats (24). 
Furthermore, the current data demonstrate the importance of 

nsidering endocrine-regulated endpoints in assessing the po- 
itial impact of pesticides on amphibians. Reported teratogen- 
s, growth inhibition, and mortality in amphibians in response 
atrazine were not considered environmental concerns because 
the high doses required to produce these effects (40). Effects 
the current study, however, occurred at levels 10,000 times 
ver than the dose required to produce effects in amphibians 
these previous studies (40-45). Allran and Karasov (14) 

ached the conclusion that atrazine was probably not a signif- 
int factor in amphibian declines based on their studies of 

icity, deformities, and effects on feeding and ventilation in 

)pard frogs that did not produce noticeable effects below 3 
m. The current data show that negative effects on sex differ- 
tiation occur at doses 30,000 times lower than effective doses 

ported by Allran and Karasov. The Allran and Karasov study, 
wever, examined a different species and different endpoints. 
The current data raise new concerns for amphibians with 
gards to atrazine. Effective doses (0.1 ppb for the production 
hermaphrodites and 1 ppb for reduction in laryngeal size) are 
ologically relevant. The recommended application level of 

Hayes et al. 



6 - till 
E pa _ 1 

**dOl)~~ 5 all-atr 
Males~ TetdFmlscTh 

Z wh 
Al 

C 3 gal 
O otl 

qu 4) 2 & ^Hin 
0( I dis 
O ar 

.1 B aB B Bdo 

Q) ~ sul 

-- all 
" " 0 Control Atrazine- Control tal 

Males Treated Females co 
Males de 

Fig. 4. Effect of 46-day exposure to atrazine on plasma testosterone levels sul 
in sexually mature male X. laevis. Sexually mature males were housed indi- (3, 

vidually. Experimental animals were treated every 3 days with 25 ppb atrazine, ex 
and controls were treated identically except without atrazine exposure. Con- wi 
trol females are shown for comparative purposes. Letters above bars show wa 
statistical groupings (ANOVA, P < 0.05). CO 

inl 
cu 

atrazine ranges from 2,500,000-29,300,000 ppb (46), the allow- ex 
able contaminant level for atrazine in drinking water is 3 ppb dis 
(39), and short-term exposures of 200 ppb are not considered a to: 
health risk. Atrazine can be as high as 21 ppb in ground water, co 
42 ppb in surface waters, 102 ppb in river basins in agricultural iai 
areas, up to 224 ppb in Midwestern streams, and up to 2,300 ppb ot] 
in tailwater pits in Midwestern agricultural areas (47, 48). ro 
Atrazine can be found in excess of 1 ppb in precipitation in 
localities where it is not used and up to 40 ppb in rainfall in W ass Midwestern agricultural areas (49-51). Further, Davidson et al. his 
(52) recently reported that at least one species (Rana aurora) Ch 
may be affected by aerial transport of agrichemicals. They Jol 
showed that declines and extirpations of R. aurora populations Hc 
were strongly correlated with areas that were downwind of pr' 
agricultural activity. Furthermore, Cory et al. (53) showed that wc 

agrichemicals can be transported aerially and accumulated in 
amphibians' tissues. Thus, the likelihood that wild amphibians Av 
are exposed to 0.1 ppb or even 1 ppb atrazine is extremely high. Pr 
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Furthermore, atrazine is typically applied when the soil is 
ed, such that levels are highest during spring rainfall (13). This 
:tern of use puts amphibians at great risk, because the highest 
azine levels coincide with the breeding season for amphibians. 
roughout areas where atrazine is used, atrazine levels peak 
ile larval amphibians are at critical developmental stages. 
;o, depending on the species, amphibians breed in every 
ssible freshwater microhabitat-from temporary pools, irri- 
ion ditches, and flooded fields, to streams, rivers, lakes, and 
ler permanent sources of water. The current data raise the 
estion of the threat of atrazine, in particular, and of pesticides, 
general, to amphibians in the wild. Low-dose endocrine- 
rupting effects, which have not been addressed extensively in 
phibians, are of special concern in this regard. If such effects 
occur in the wild in other species, exposed animals could 
fer impaired reproductive function. The described effects are 
internal and may go unnoticed by researchers-unlike mor- 
ity and external malformations. Thus, exposed populations 
uld decline and even go extinct without any recognition of the 
velopmental effects on individuals. Already, it has been 
;gested that pesticides may play a role in amphibian declines 
52, 54, 55). Also, Reeder et al. (56) found that atrazine 

?osure may be associated with intersexual cricket frogs in the 
d in the Illinois. Because the P value in the Reeder et al. study 
s 0.07 and because no laboratory data were available, they 
ncluded that "[w]hether atrazine accounts for findings of 
ersexuality is less clear" (ref. 56, p. 265). We believe that the 
-rent data strongly suggest a connection between atrazine 
posure and intersexuality. Combined with the decreases in 
solved oxygen, pH, and available food sources (phytoplank- 
i, periphyton, and macrophytes) caused by atrazine (45), this 
mmon contaminant could be a contributing factor in amphib- 
i declines. Ongoing investigations of the effects of atrazine on 
ier species and amphibians in the wild will assess the realized 
e of this widespread compound in amphibian declines. 
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